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FLEXTENSIONAL TRANSDUCER MODELING USING VARIATIONAL PRINCIPLES

INTRODUCTION

Variational principles are an approximation method that allows one to obtain accurate

estimates for a quantity of interest using relatively crude representations, known as trial

functions, for the physical behavior of the system. This method is applied to flextensional
transducer analysis by coupling a variational principle developed for the resonance frequency of

the piezoelectric driving element to one for the resonance frequency of the shell, carefully
ensuring that the boundary conditions at the driver-shell interface are satisfied. The in-vacuo

mode shapes and resonance frequencies for a Class V ring-shell transducer calculated in this

manner are compared with finite element modeling and experimental data for the first two modes
of the transducer. There is excellent agreement between the methods in the calculation of the
resonance frequencies, even though the mode shapes calculated variationally do not agree
exactly with the finite element predictions.

Fluid-loading effects on the transducer are introduced by coupling the in-vacuo variational
transducer model to a variational principle for the surface pressure of a radiating body based on
the Helmholtz integral equation. The surface pressures determined using the variational
formulation and the finite element method for a single Class V ring-shell projector are compared
for the first two resonant modes. It is shown that the agreement for the surface pressure is better
for the first mode, but in both cases the agreement is still reasonable. Explanations for these
discrepancies are discussed. Options for calculating the far-field pressures from the variationally
determined surface pressures are presented.
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VARIATIONAL PRINCIPLES

OBJECTIVE: TO OBTAIN ACCURATE ESTIMATES OF PHYSICAL
QUANTITIES WITHOUT THE CONSTRAINT OF SATISFYING THE

EQUATIONS OF MOTION OR BOUNDARY CONDITIONS EXACTLY
EQUA~iONS BOUNDARY

OF MOTION. CNIiN
2

VARIATIONAL PRINCIPLE (VP)
FOR PHYSICAL QUNTI

TRIAL FUNCTIONS I
(APPROXIMATIONS TO
SYSTEM BEHAVIOR)

+ ~0.5.
I. ESTIMATE OFPHYSICAL QUANTITY a 0

0COO 1 2 3
Variational pmrarneter x

MPROVE 'TRIAL FUNCTION

FIGURE 1

A variational principle (VP) provides estimates of a particular physical quantity without
having to satisfy the equations of motion or the boundary conditions exactly. The equations of
motion describing a particular system, along with the applicable boundary conditions, are
combined using a generalized method given by E. Gerjuoy, A.R.P. Rau and L. Spruch [Rev.
Mod. Phys. 51, pp. 725-774 (1983)] into a variational expression for some quantity of interest,
say y. Approximations to the physical behavior of the system, known as trial functions, are then
incorporated into the VP to yield the estimate. The accuracy of this estimate can be improved by
improving the trial functions, either by incorporating more terms if using a basis function
expansion (Rayleigh-Ritz method) or by allowing the trial functions to satisfy at least some of

the boundary conditions. On the right hand side, this process is illustrated by assuming that the
quantity y depends on some complicated function z of a parameter x. We denote the trial

function by zt-f(x), where f(x) is a relatively crude approximation to z, and vary x. The
variational estimate of y is shown by the solid line, while the exact solution is the dotted line.

The best estimate of y for the particular choice of trial function zt occurs at some optimum value

for x, at which the minimum occurs. About this optimum value, the variational curve is
relatively flat, showing that the variational estimate is stationary with respect to small variations

of x about this optimum value. The crude trial function zt yielded a very accurate estimate of the
quantity y, demonstrating that a variational estimate is always more accurate than the trial
function used to obtain it.
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VARIATIONAL TRANSDUCER MODEL (IN-AIR)

PIEZOELECTRIC DRIVER SHELL

NEWTOWS rGAUW E. DRIVER CSHELLE SHELLc
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I I _ _
STRIAL FUNCTIONS FOR: IITRIAL FUNCTIONS FORI
DRIVER DISPLACEMENT 0iI SHELL DISPLACEMENTS I
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FIGURE 2

The derivation of a variational model for a flextensional transducer is illustrated by the

flowchart above. The primary constituents of such a transducer are a driver, usually consisting

of piezoelectric ceramic, attached to. an elastic shell. The extensional motion of the driver causes

the shell to move in a flexural mode, hence the term flextensional. To obtain a variational model

for the transducer as a whole, variational expressions for the resonance frequency of the
individual parts are derived. Newton's force equations and Gauss' law for the piezoelectric

material, expressed in the notation of B.A. Auld [Acoustic Fields and Waves in Solids, Wiley-

Interscience, New York (1973)], are combined with appropriate boundary conditions to yield a

VP for the resonance frequency of the driver. The appropriated independent variables for this
VP are the driver displacement ij and the electric potential 4). Similarly, shell equations, such as

the generalized equations in A.W. Leissa ["Vibration of Shells," NASA Sp-288, Washington,

D.C., 1973], and boundary conditions, e.g. free, clamped, etc., yield a VP in terms of the normal

shell displacement w and two tangential displacements u and v. The models for the piezoelectric

driver and spherical shell cap for a Class V ring-shell projector have been verified by the authors

previously ["Variational Modeling of Class V Flextensional Ring-Shell Projectors," in

Transducers for Sonics and Ultrasonics, Technomic, Lancaster, Pa., pp. 209-221 (1992)]. Once

the individual VPs have been verified, they may be coupled, using interface boundary conditions,

into a variational model for the transducer. This model will yield highly accurate estimates for

the eigenfrequencies but gives less accurate mode shapes.
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RING-SHELL COORDINATE SYSTEM
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a Ur
R e

b /
Drivin rin

'L r

Ring coordinates

S3111.2.tO.103BI

FIGURE 3

A cut-away diagram of the simplified ring-shell transducer configuration modeled is shown

above. The driver consists of slabs of piezoelectric ceramic alternating with wedges of steel to
form a ring. The ceramic is arranged such that the poling of the driver is tangential, and the net

effect of the extension of the slabs produces radial motion in the ring. The driver has an inner

radius a, outer radius b and a height t The preferred coordinates for the ring are cylindrical

coordinates (r,8, z). Since the motion of the ring is axisymmetric, the driver displacements of

consequence are the radial displacement ur and the axial displacement u',
Two spherical shell caps, typically composed of steel, are mounted to the top and bottom of

the ring driver. The bottom shell is not shown here for simplicity. In the shell (spherical)

coordinate system (r, 0, O), the shell cap has a constant radius of curvature R and spans an
azimuthal angle O0. The motion of the ring driver is transformed into flexural motion of the

shell; since the driver motion is axisymmetric, only the normal shell displacement w and

azimuthal displacement u are modeled.

It must be noted that several simplifications to the realistic ring-shell geometry have been

made here. Most importantly, the shell is bolted to the ring driver via a flange. The effect of the

flange will be modeled by matching the shell displacements and moments to those of the ring at

the point of intersection. Furthermore, a fiberglass wrapping around the outside of the ring is
neglected; the prestressing effect of this -"mponent will be accounted for by matching the

normal stress on the outer ring radius to a nominal prestress value.
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TRIAL FUNCTIONS FOR RING DRIVER AND SHELL CAP

* TRIAL FUNCTIONS FOR PIEZOELECTRIC RING DRIVER

Ur," ZA,[J, (4 r)+B. N, (Xn r)] sin((2q. -1).zah]
n.1

N,

Uztn, Cn[Jo (l r) +DnNo (in r)] oos [(2pn - I.ra/ft
n-1

- En sin [N Me/2
n-1

* TRIAL FUNCTIONS FOR SHELL DISPLACEMENT
N, N,

Wt- W cos (O) utZ- U, sin (re)

FIGURE 4

Modeling the ring in cylindrical coordinates (r, , z), linear combinations of Bessel functions

J0 and JI and Neumann functions No and N1 are chosen as the basis for the driver displacements.

The motion of the ring is essentially radial; however, z dependence is included to model the

effects of higher order bening modes ot the ring. The parameters TIn and , along with the

coefficients B. and D. are determined so that stress-free boundary conditions on the inner and

outer radii of the ring are satisfied. nandqn are integers. Since the ring motion is axisymmetric,

there is no dependence on the angle efor the displacement. However, since the ring is poled

tangentially, the electric potential does depend on the angle but is assumed to constant with

respect to the other dimensions of the ring. The factor M is simply the number of segments in

the ring. The parameter 3n is also an integer. Once the VP for the ring has been determined and

these trial functions substituted into it, the coefficients An , Cn and En can be determined using

the standard Rayleigh-Ritz procedure (cf. A.L. Fetter and J.D. Walecka [Theoretical Mechanics

of Particles and Continuous Media, McGraw-Hill, New York, pp. 219-244 (1980)]).

The shell is modeled in spherical coordinates (r, 0, 0). Since the shell surface has a constant

radius of curvature, and assuming axisymmetric excitation, the trial functions depend on the

azimuthal coordinate 0 only. The choice of these particular basis functions for the shell

displacements ensures that the motion of the shell at the crown (0=0) is purely radial, i.e. ut--0,

and that the resonance frequencies for a closed spherical shell predicted by the analytical solution

of W.E. Baker [J. Acoust. Soc. Am. 33, pp. 1749-1758 (1961)] are reproduced exactly.
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IN-AIR COUPLING OF RING DRIVER AND SHELL

* PIEZOELECTRIC VARIATIONAL PRINCIPLE AND SHELL
VARIATIONAL PRINCIPLE MUST BE SOLVED SIMULTANEOUSLY
UNTIL CONVERGED RESULT FOR THE RESONANT FREQUENCY IS
OBTAINED

* BOUNDARY CONDITIONS AT SHELL-DRIVER INTERFACE
wo coso 0 -Uo sineo-u P
%b sineo+uo cOSOo-up

M,( 0 )-k1 [L+Vcoto][O YUo+-]-o

* ADDITIONAL BOUNDARY CONDmONS
PURELY AXIAL SHELL MOTION AT CROWN

COMPRESSIVE PRE-STRESS ON OUTER RING SURFACE

STRESS-FREE ON INNER RING SURFACE

TOP AND BOTTOM RING SURFACES STRESS FREE AND ELECTRICALLY FREE
s3111l-O10.am-a1e

FIGURE 5

In order to model the ring-shell transducer in air, careful consideration must be given to the

boundary conditions at the shell-driver interface. Of the greatest importance is matching the

displacement of the ring driver with that of the shell at the point of intersection 0 = 00.
Furthermore, we have assumed that the bending moment Moof the shell at the shell-driver

interface is zero. This may not be exactly correct, but the bending moment of the shell at this

point is in all likelihood small enough to warrant such an approximation. Additional studies of

the effect of various moment conditions on the results presented here will be carried out in the

future. In addition to these interface conditions, several other boundary conditions must be

satisfied. The trial functions for the shell are such that the motion of the shell at the crown (0=0)

is purely radial. The effect of the fiberglass wrapping is approximated by constraining the
normal stress on the outer surface of the ring. The inner surface of the ring, on the other hand, is

assumed to be stress-free. Furthermore, the top and bottom surfaces of the ring driver are

assumed to obey mechanically stress-free and electrically free boundary conditions, except where

the shell intersects the ring.
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MODE SHAPES OF THE TWO LOWEST RESONANCES
RING DRIVER-SPHERICAL SHELL CAP COMBINATION
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FIGURE 6

The in-air mode shapes of the ring-shell projector calculated variationally are compared with
ATILA finite element results from J.B. Blottman ["Sparton Ring-Shell Single Element

Modeling," NUSC Tech. Memo. No. 89-1090, 6 June 1989]. Only the shell displacement is

shown here as a function of radial distance from the line =--0, since the ring moves very little.
The actual displacements are exaggerated by a factor of 400 and are normalized to the rest
position of the crown of the shell. As can be seen, the lowest variational resonant mode agrees
quite well with the finite element prediction, with a maximum deviation of approximately 5%.
This mode clearly is one in which the motion of the shell is purely normal to the shell surface,
i.e. u--0 for this mode. The second mode, on the other hand, shows quite a bit of deviation from
the finite element calculation. However, on comparison with the results presented in the
Blottman study, it appears that the variationally determined mode shape for the second mode
closely parallels the second antiresonance mode shape predicted by the finite element method.
We can infer that the variational principle, as presently formulated, does not distinguish between
the resonant and antiresonant modes, and simply chooses the one which is "simplest" as the
correct solution. However, as we shall see, this deficiency does not appear to be a serious
drawback, since it is the expression for the resonance frequency that is stationary with respect to
variations in the mode shape and not vice versa. Apparently, the VP as formulated searches for

an extremum rather than an absolute minimum.
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RESONANCE FREQUENCIES FOR RING-SHELL IN AIR

RESONANCE FREOUENCIES (HZ)

1ST MODE 2ND MODE

VARIATIONAL PRINCIPLE 960 1345

ATLA 956.8 1331

EXPERIMENT(± 40 Hz) 920 1320

0311 -lU ls-etg

FIGURE 7

The variationally calculated resonance frequencies of the ring-shell in air are compared to

finite element and experimental values. The experimental in-air data was obtained under the

NATO Comparative Test Program (CTP) by M. Werbicki ["In-Water Tests of the Sparton of
Canada (SOC) Class V Flextensional Transducer," NUSC Tech. Memo. No. 901093, 29 May
1990], using a wide frequency sweep at 40 Hz increments and no tuning. The variational and
ATILA results agree very well for the 1 st mode, and both fall within the range of experimental

error for this mode. For the second mode, both variational and finite element results fall within

the error of the experimental data, with the finite element calculation coming somewhat closer to

the "true" value of the resonance frequency. However, it must be noted that the variationally

determined resonance frequency falls above both the resonance and antiresonance frequencies of

the second mode determined by ATILA, lending further credence to the hypothesis that the VP

for the ring-shell transducer does not discriminate between resonance and antiresonance modes.

The important feature of these results is that, despite the fact that the variationally determined

mode shapes may not be good representations of the actual transducer behavior, the resonance

frequencies calculated using them are still within acceptable error limits.

Having completed and validated the in-air model of the ring-shell transducer, fluid loading

effects must be incorporated to yield a workable transducer model. The remainder of this

document will concentrate on this aspect of the analysis, and on the question of how accurate the

in-air description must be in order to accurately model the transducer in water.
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VARIATIONAL FLUID LOADING FORMULATION

I HELMHOLTZ INTEGRAL EQUATIONI

SURFACE VARIATIONAL PRINCIPLE
(WU, GINSBERG AND PIERCE)

IMETHOD OF ASSUMED MODES I
FOR PRESSURE, DISPLACEMENTAND ELECTRIC POTENTIAL

COUPLED FLUID-STRUCTURE
INTERACTION EQUATIONS

(INCLUDING PIEZOELECTRICITY)

IN-''ACUO EIGENMODES FOR
DISPLACEMENT AND
ELECTRIC POTENTIAL

MODAL FORMULATION OF SVP

83111 IR.lOU..I

FIGURE 8

The variational formulation of fluid-loading effects begins with the familiar Helmholtz

integral equation (c.f. M.C. Junger and D. Feit [Sound. Structures and Their Interaction, 2nd ed.,

MIT Press, Cambridge, MA (1986)]) relating the sound pressure in a fluid to the velocity and

pressure distribution on the surface of a radiating body submerged in it. The Helmholtz integral

involves free-field Green's functions which become singular as the source and field poi0ats

approach one another. By allowing the field point to approach the surface gradually and

carefully taking the limits of the integrals involved, X.F. Wu ["Variational Principles for

Acoustic Radiation and Diffraction From Underwater Structures," Georgia Institute of

Technology Rept. No. GTADL-TR-87-102, 24 November 1987] and J.H. Ginsberg, P.T. Chen

and A.D. Pierce [J. Acoust. Soc. Am. B1, pp. 548-559 (1990)] developed a variational expression

for the pressure on the surface of a radiating body with a prescribed surface velocity. Structural

effects can be incorporated using the so-called method of assumed modes, e.g. assuming a basis

function expansion for the pressure, displacement and electric potential of a flextensional

transducer. This yields a set of coupled fluid-structure interaction equations for the transducer

which are similar in form to the finite element formulation of R.R. Smith, J.T. Hunt, and D.

Barach [J. Acoust. Soc. Am. 54, pp. 1277-1288 (1983)]. The critical difference here is that the

structure has not been discretized in any way. The complexity of the problem may be further

reduced by utilizing the in-vacuo eigenmodes for th( displacement of the struccure, leading to a

modal formulation of the surface variational principle (SXP).

9



FLUID LOADING IN RING-SHELL TRANSDUCER MODEL

* EXPRESS DISPLACEMENTS AND ELECTRIC POTENTIAL IN TERMS
OF IN-VACUO EIGENMODES OF RING-SHELL TRANSDUCER

L L

1M,,I1..a 4 t I .10

0 TRIAL FUNCAIONS FOR SURFACE PRESSURE

p (s) - Y Pcos WS s
li-I

* MODAL FORMULATION OF SVP
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[ ] [A] ][(P) J r{FP}

FIGURE 9

The variationally determined eigenmodes of the transducer are denoted by U. (for the

combination of the shell and driver displacements) and by Om (for the electrostatic potential).

Any arbitrary displacement and potential can now be expressed as a linear combination of these

mode-. This combination fully describes the structural and electrical transducer response. Since

the ring-shell transducer is axisymmetric, the spatial coordinates of the surface may be described

in terms of a generating parameter s, to be defined momentarily. The s-irface pressure on the

transducer can now be written as an expansion of simplistic basis functions of the parameter s as

indicated above. Combining these expansions with the coupled fluid-structure interaction

equations yields the modal formulation of the surface variational principle (SVP), where {TI) and

(P) denote the set of expansion coefficients for the in-vacuo eigenmodes and the surface

pressure, respectively. e), 2 is the in-vacuo resonance frequency of the transducer. The matrices

[A] and [11 incorporate the coupling between the motion of transducer and the fluid. The matrix

[A] gives the pressure self-interaction contributions. {Frm) and ( Fp} represent any external

forcing functions. The solution of this matrix equation for a given frequency o yields the

variationally determined surface pressure of the radiating body. This surface pressure, together

with prescribed surface velocity distribution, can then be utilized in the Helmholtz integral

equation to calculate the far-field pressure.

10



GENERATOR REPRESENTATION OF RING-SHELL TRANSDUCER

AZ

T M
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FIGURE 10

The axisymmetry of the ring-shell configuration is exploited by representing the surface of the
transducer by the coordinates [r(s), z(s)], where s is a parameter measuring the length along the

surface from the bottom crown of the shell, located at s = - S.ax:

Rsin [(s+ Sm)/R] -VT2-R( sin [(s+Sm)/R]-cosOo) -S..m s -Sn

(r/2 + b) + s -/2 - Sint < s:5 - x/2

r(s) b z(s)= S - r/2:5 s S /2

(r/2 + b) - s r/2 c/2 < s < Smt

Rsin [(s- S.)/R] r/2 +R{ sin [(s + Smax)/R]-cosOo) Sint 5 <Sm<ax

The origin s = 0 lies halfway up the outer surface of the ring driver, so that r (s = 0) = b and z (s

= 0) = 0. Note that the intersection between the shell and the ring driver, Sin, is expressible
purely in terms of the ring height ?, the outer radius b, the shell radius of curvature R, and the

angle 0o. Smx is given by adding Sint to the arc length of the shell. Rotation of this generator

about the z axis gives the complete three-dimensional geometry for the surface of the transducer.
All the pertinent physical quantities are expressible in terms of this generator parameter, and

therefore all the calculations involve integrations over the parameter s only.
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SURFACE PRESSURE ON RING-SHELL TRANSDUCER (MODE 1)
1.h9,
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FIGURE 11

The variationally calculated surface pressure for a fluid-loaded ring-shell transducer is

compared with the corresponding ATILA values for the first resonant mode (ca. 600 Hz) in the

above figure. This variational calculation requires one in-vacuo eigenmode for the transducer

structure and four surface pressure trial functions. The pressure has been normalized to the

maximum value of the imaginary part of the surface pressure calculated using ATILA. The

distance along the generator is measured from the crown of the shell to the midpoint of the outer

radius of the ring. Since the transducer is symmetric about the midplane of the ring, the surface

pressure is symmetric about that point as well. As can be seen, the surface pressures calculated
variationally compare favorably with those calculated using finite elements. It is of interest to

note that, despite the fact that the variational model does not include a flange, the general

behavior of the surface pressure over the region where the flange would exist in reality is

modeled well, although some of the finer details (i.e. local maxima and minima and pressure

contour discontinuities associated with the comers of the flange and the flange-driver interface)

are not represented. Nonetheless, it is evident that even using relatively unsophisticated trial

functions for the surface pressure can yield very good results.
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SURFACE PRESSURE ON RING-SHELL TRANSDUCER (MODE 2)
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FIGURE 12

A comparison of variational and finite element results for the second resonant mode (ca. 1

KHz) is shown above. The agreement between the variational and ATILA results is somewhat

worse than for the first mode. This is to be expected since, in general, variational formulations

yield progressively worse results as one calculates higher eigenvalues. Nevertheless, the general
behavior of the pressure on the shell is still shown by the variational calculations, and the

discrepancy between the finite element and variational pressures is, at most, 5%. One interesting

feature of this calculation is shown by the ring behavior. ATILA predicts, quite correctly, that

the surface pressure over the outside surface of the ring driver will be nearly constant, since the

displacement of the ring is almost purely radial and uniform. However, the surface pressure trial

functions used in the variational calculations are not formulated to reflect this property, hence the

digression in results. An improved trial function incorporating uniformity of the surface pressure

over the outside surface of the ring would probably increase the accuracy of the variational

results.

These surface pressures can now, in principle, be utilized to calculate the far-field pressures in

two ways. For simple trial functions, the surface pressure distribution may be substituted back

into the Helmholtz integral equation to obtain the far-field pressure. An alternative is to use

spherical Hankel functions, which are the exact solution in the far-field, as trial functions and

utilize the coefficients determined by the SVP to calculate the far-field directly. A drawback to

this approach is that much of the flexibility in the variational formulation is iost.
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FLEXTENSIONAL TRANSDUCER MODELING USING
VARIATIONAL PRINCIPLES-CONCLUDING REMARKS

0 VARIATIONAL PRINCIPLES FOR PIEZOELECTRIC DRIVER AND SHELL
ELEMENTS OF FLEXTENSIONAL TRANSDUCERS HAVE BEEN
DEVELOPED AND VAUDATED

* COUPLING PIEZOELECTRIC AND SHELL ELEMENTS TO MODEL
RING-SHELL TRANSDUCER IN AIR YIELDS GOOD RESULTS FOR
RESONANCE FREQUENCIES

* INCLUDING FLUID LOADING USING SURFACE VARIATIONAL
PRINCIPLE FORMULATION GIVES SURFACE PRESSURE VALUES
IN GOOD AGREEMENT WITH FINITE ELEMENT PREDICTIONS

* IMPROVED TRIAL FUNCTIONS FOR THE SURFACE PRESSURE WILL
IMPROVE RESULTS AND COULD LEAD TO BEAM PATTERNS
WITHOUT FURTHER CALCULATION

FIGURE 13

In conclusion, it can be seen that the variational principle gives us yet another mathematical

framework with which to analyze transducers. The variational principles for the resonance

frequency of the driver, shell and transducer in-air have been shown to give very good results,

even when using relatively unsophisticated trial functions. Inclusion of fluid-loading leads to the

variational principle for the surface pressure, which yields surface pressures in good agreement

with finite element predictions. These surface pressures can be used to calculate the far-field

pressure using the Helmholtz integral equation. In addition, more rigorous expansions for the

surface pressure, using the exact solutions for the pressure in the far-field, could be utilized to

obtain the far-field beam pattern directly.

A brief word about computational efficiency is in order here. It is difficult to directly assess

the relative computational speed of the variational method and the finite element code ATILA for

several reasons. First, the variational calculations were done on the VEAMF1 (VAXvector

6510) machine using MATLAB software, whereas the ATILA runs were done on a Microvax.

Thus, the operating systems and programming languages for the two analyses are considerably

different. Secondly, and probably most importantly, the variational programs used in this

analysis are, in their present form, not configured to run efficiently as a single package, but rather

as a train of programs to be followed in sequence. Subsequent programming to streamline the

variational computations should improve the efficiency considerably.
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